Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656697

RESUMO

BACKGROUND: In agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge as a consequence of the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions. RESULTS: Our evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7-12 EPN strain and prevalent insecticides, specifically beta-cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin-clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs. CONCLUSION: Our research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings, but also supports wider environmental objectives by reducing the dependency on chemical insecticides. © 2024 Society of Chemical Industry.

2.
Pest Manag Sci ; 79(11): 4383-4389, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37384581

RESUMO

BACKGROUND: Entomopathogenic nematodes (EPNs) in an aqueous suspension treatment showed potential in the biocontrol of the red imported fire ant Solenopsis invicta, whereas colony relocation following this inundative application had restricted overall effectiveness. As a novel strategy, EPN pre-infected insect cadavers carrying the next generation of nematode-infective juveniles (IJs) might be used to efficiently manage insect pests. However, this strategy has not been tested on S. invicta. This study evaluated EPNs emerging from wax moth Galleria mellonella cadavers to facilitate infection of S. invicta compared to those used in aqueous suspensions. RESULTS: Among seven EPN species, Steinernema riobrave and Heterorhabditis bacteriophora had the highest insecticidal efficiency in aqueous treatment. Cadavers of G. mellonella colonized by either one of two EPN species were not damaged by worker ants, ensuring that the IJs could develop within and emerge successfully from the cadavers. Likewise, compared to an aqueous suspension treatment with an equivalent number of IJs, treatment with an S. riobrave-infected cadaver increased the mortality of S. invicta by ≈10%, whereas infection by H. bacteriophora did not differ between treatments. However, the coexistence of S. riobrave- and H. bacteriophora-infected cadavers adversely affected the control of S. invicta, likely as a result of competition resulting from the increased dispersal of each emerging EPN species. CONCLUSION: Using EPN-infected G. mellonella cadavers as a strategy increased the mortality of S. invicta in the laboratory. This study provides positive evidence for the future applications of S. riobrave-infected cadavers in the biocontrol of red imported fire ants. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Formigas , Mariposas , Rabditídios , Animais , Controle Biológico de Vetores/métodos , Cadáver , Água
3.
J Invertebr Pathol ; 159: 87-94, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30300629

RESUMO

In two field surveys, high proportions of Galleria mellonella L. (Lepidoptera: Pyralidae) sentinel larval cadavers were infected by Fusarium solani without evidence of concomitant entomopathogenic nematode (EPN) or entomopathogenic fungus (EPF) reproduction. Because F. solani is not considered entomopathogenic, the survey suggested the possibility that F. solani competes with EPNs. We tested the hypotheses that F. solani attracts the EPN, Steinernema diaprepesi, to facilitate infection of Diaprepes root weevils (Diaprepes abbreviatus L.) and thereafter competes with the nematode in the insect cadaver. In two-choice olfactometer assays where one side was treated with F. solani mycelia and conidia, juvenile S. diaprepesi were attracted to the fungus, in either raw soil, or in autoclaved soil in the presence or absence of insects. However, this attraction was attenuated as the habitat became more complex, by using raw soil in combination with insect larvae. Fusarium oxysporum did not recruit the nematode. When soil microcosms were tested with F. solani conidia and S. diaprepesi, the concomitant infection increased the mortality of the insect (P = 0.02) to 83%, compared to 58% and 0% mortality when nematodes or fungi were individually applied, respectively. Concomitant inoculation also increased the number of cadavers that supported nematode reproduction and increased the population density of fungus in soil. The number of IJs entering the host insect was not affected by F. solani. These results support the possibility that F. solani can facilitate the insecticidal efficiency of S. diaprepesi in order to exploit the resources in the cadaver.


Assuntos
Fusarium/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Mariposas/parasitologia , Estrongilídios/efeitos dos fármacos , Animais , Controle Biológico de Vetores/métodos , Rabditídios , Microbiologia do Solo
4.
Nanotechnology ; 21(18): 185702, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20378946

RESUMO

Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO( - )NA( + )) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.


Assuntos
Nanotubos de Carbono/química , Ácidos Polimetacrílicos/química , Impedância Elétrica , Concentração de Íons de Hidrogênio , Espectroscopia Fotoeletrônica , Hidróxido de Sódio/química , Análise Espectral Raman , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA